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ABSTRACT

Comparative phylogenetic studies of adaptation are uncommon in
biomechanics and physiology. Such studies require data collection
from many species, a challenge when this is experimentally intensive.
Moreover, researchers struggle to employ the most biologically
appropriate phylogenetic tools for identifying adaptive evolution.
Here, we detail an established but greatly underutilized phylogenetic
comparative framework — the Ornstein—Uhlenbeck process — that
explicity models long-term adaptation. We discuss challenges in
implementing and interpreting the model, and we outline potential
solutions. We demonstrate use of the model through studying the
evolution of thermal physiology in treefrogs. Frogs of the family
Hylidae have twice colonized the temperate zone from the tropics,
and such colonization likely involved a fundamental change in
physiology due to colder and more seasonal temperatures. However,
which traits changed to allow colonization is unclear. We measured
cold tolerance and characterized thermal performance curves in
jumping for 12 species of treefrogs distributed from the Neotropics to
temperate North America. We then conducted phylogenetic
comparative analyses to examine how tolerances and performance
curves evolved and to test whether that evolution was adaptive. We
found that tolerance to low temperatures increased with the transition
to the temperate zone. In contrast, jumping well at colder
temperatures was unrelated to biogeography and thus did not adapt
during dispersal. Overall, our study shows how comparative
phylogenetic methods can be leveraged in biomechanics and
physiology to test the evolutionary drivers of variation among species.

KEY WORDS: Biogeographic dispersal, Critical thermal minimum,
Hylidae, Jumping performance, Ornstein—Uhlenbeck model,
Thermal performance curve

INTRODUCTION
Experimental studies in comparative physiology and biomechanics
often demonstrate the functional significance of phenotypes in
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a given environment. A close fit between environment and
function can be seen as indicating that a phenotypic state is
adaptive, with the assumption that the trait and its function increase
the organism’s fitness in its current environment (Reeve and
Sherman, 1993). Such studies, sometimes called the equilibrium
approach, can be and frequently are performed on single species
(Lauder, 1982, 1996).

Demonstration of adaptation across species is much less common
in comparative physiology and biomechanics (comparative
physiology hereafter for brevity; Vogel, 2007). In explicitly
historical studies, researchers collect data for multiple species and
examine character evolution along a phylogeny. Studies analyzing
morphological data with complex phylogenetic comparative
analyses are widespread (Cooper et al., 2016a). However, similar
studies using physiological data are much rarer owing to three key,
interrelated challenges (Lauder, 1990, 2003; Garland et al., 2005,
Bauer et al., 2020): (1) collecting data from multiple species
distributed across broad geographic areas is expensive and
logistically difficult; (2) challenging conditions limit the type of
data that can be collected in the field; and (3) difficult experimental
procedures using finely calibrated equipment may be hard to
replicate on multiple species. Despite these challenges, such studies
are essential for understanding the evolution of physiological
diversity (Lauder, 2003), particularly over deep time scales.

Phylogenetic studies of adaptation have taken two key tracks.
First, early practitioners emphasized studying the order of
character change along a phylogeny (Lauder, 1982, 1991; Baum
and Larson, 1991). Changes in phenotype that occurred along with
or subsequent to changes in the environment on a branch indicated
adaptation. This practice followed defining an adaptation as a
character state that originated in response to natural selection in a
novel environment (Lewontin, 1978; Gould and Vrba, 1982;
Amundson, 1996). Yet this approach has largely fallen out of
practice for many reasons. Ancestral states are hard to accurately
estimate, particularly on phylogenies with only extant species
(Cunningham et al., 1998; Cunningham, 1999; Losos, 1999).
Moreover, in fast-evolving traits or on long branches, multiple
changes on a single branch cannot be detected. Alternatively,
infrequent evolutionary change in both phenotype and environment
may limit robustly testing the fit between the two (Martins, 2000).
Lastly, change in both phenotype and environment along the same
branch may make it difficult to test which change was the cause of
adaptation: did phenotypic change permit colonization of a novel
environment, or did environmental change cause phenotypic
adaptation (Lauder, 1991)? In the extreme case of change in
several traits and environments along a single branch, causal
inference may be impossible (Lauder, 1982, 1990; Leroi et al.,
1994; Maddison and FitzJohn, 2015; Uyeda et al., 2018).
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List of symbols and abbreviations

BM Brownian motion

CThin critical thermal minimum

L80 lower temperature threshold for 80% of peak jumping
performance

MCC maximum clade credibility

ou Ornstein—Uhlenbeck

PGLS  phylogenetic generalized least squares

TPC thermal performance curve

o rate of approach to the primary optimum

0 primary optimum in OU model

c scale of change in models of evolution

c? rate of stochastic character change in models of evolution

A second, alternative phylogenetic approach tests the long-term
association between phenotypes and environments, the classical
comparative method (Harvey and Pagel, 1991; Martins, 2000).
Approaches based on this association — including phylogenetic
regression and ANOVA — are now increasingly common in
comparative physiology and implicitly test for adaptation (Martins,
2000; Olson, 2021). However, the most common approaches
primarily aim to avoid statistical problems in hypothesis testing,
such as the non-independence of species (Hansen and Orzack, 2005;
Hansen, 2014; Pennell, 2015). Such approaches do not directly model
the process of adaptation of a phenotype to a particular environment
(Hansen, 1997; Butler and King, 2004), which leads to statistical and
interpretational problems. Hansen (1997) introduced a method, based
on the Ornstein—Uhlenbeck (OU) process, that models evolution as
stochastic movement towards an adaptively optimal state. This
‘Hansen model’ (Butler and King, 2004) has its foundations in earlier
quantitative-genetic models of stabilizing selection, with long-term fit
of a character state to its environment as positive evidence for
adaptation (Hansen, 1997; Martins, 2000).

Despite its age, the Hansen model remains greatly underutilized.
As work in comparative physiology becomes increasingly
phylogenetic, we believe that understanding this approach and its
advantages for studying physiological adaptation is timely. Thus, in
this study, we first describe Hansen’s (1997) OU model of
adaptation in more detail. We next demonstrate its use in a case
study of physiological evolution in treefrogs. We then discuss
commonly misunderstood statistical properties of the model,
challenges in implementation, and the effects of studying
relatively few species. Finally, we provide data analysis tutorials
to help researchers use the Hansen model in their own work.

Overview of the Hansen OU model of adaptation
The Hansen model has been described and discussed considerably
in the evolutionary literature (see reviews in Hansen, 2014,
O’Meara and Beaulieu, 2014). Yet proper interpretation of the
model, as well as best practices for implementation, remain poorly
understood (Hansen, 2014; Cooper et al., 2016a,b). We thus
summarize the model here and distinguish it from more frequently
used approaches. Throughout this discussion we use ‘environment’
to indicate a discrete selective factor (e.g. diet, habitat,
biogeographic region); such factors are also commonly called
selective regimes. We use ‘phenotype’ to indicate the value of a
continuous trait that responds to selection in the environment.
Most phylogenetic comparative analyses model trait evolution
under Brownian motion (BM; Garamszegi, 2014; Pennell, 2015;
Cooper et al., 2016a). BM is a pure diffusion process, with trait
change over time along phylogenetic branches, d¥(¢), described by

the stochastic differential equation:

dY(f) = odB(t), (1)

where dB(?) indicates a standard normally distributed change [i.e.
dB(1)~N(0,1)] and & indicates the scale of change (Butler and King,
2004). Viewed differently, the squared scale of change, o2, is the
rate of evolution (Martins, 1994; O’Meara et al., 2006): if changes
are larger at each time step, more variation will accrue in a clade over
time. Because this simplest version of BM has no tendency to move
toward any given trait value, species are always expected to have
values similar to those of their ancestors. Moreover, species are
expected to be similar to each other in direct proportion to the
amount of evolutionary history they share. Although BM can be
consistent with adaptive evolution (Felsenstein, 1988; O’Meara
et al., 2006; Harmon et al., 2010), it has no tendency to increase
adaptive fit over time (Martins, 1994; Hansen and Martins, 1996).
The OU process shares some elements with BM but importantly
adds deterministic change toward a central value. It has often been
described as a rubber band model (Felsenstein, 1988): taxa that
wander (stretch) too far from a central value are pulled back toward
it, and the farther they evolve away from it (the more they stretch the
rubber band), the stronger the pull to return to the center (the more
strain energy stored in the rubber band). Here, changes in a
phenotype Y(¢) between times ¢ and 7+d¢ are modeled as:

dY(7) = —a(Y(t) — 0)dt + 0dB(2), (2)

where dt is a infinitesimally small unit of time, 6 is a central ‘optimal’
value and o is the strength of the pull toward the optimum (Butler and
King, 2004). The right-hand side of the equation is the same as in the
BM model, meaning that when o=0 (i.e. no adaptation toward the
optimum), the OU process collapses into pure BM (Eqn 1).

When introduced for comparative biology, the OU process
was originally described as a model of stabilizing selection in
which o is the strength of selection and the BM diffusion
represents genetic drift (Martins, 1994; Hansen and Martins,
1996). Although this population-genetic interpretation has intuitive
appeal, macroevolution proceeds far too slowly for the OU
parameters to be interpreted this way (Lynch, 1990; Hansen,
1997,2012; Harmon et al., 2010; Uyeda et al., 2011). Thus, Hansen
(1997) described 6 as the primary optimum for an environment: the
phenotype species in that environment would have if no other factor
affected the focal trait’s evolution. In contrast, species can be
considered to have (and already be at) a species-specific optimum
value for the focal trait. These latter optima differ from species to
species because the focal trait is likely also under selection for other
species-specific functions (Hansen, 1997), as implied by
widespread trade-offs (Roff and Fairbairn, 2007). Moreover, other
factors may constrain evolution toward the primary optimum,
including correlation with other traits or genetic and developmental
constraints (Hansen, 1997). Thus, even though all species are pulled
toward the primary optimum for their current environment, their
phenotypes may not take that optimal value. Importantly, many
sources of deviation from the primary optimum are likely shared by
closely related species. Thus, even under the OU process, closely
related species are expected to deviate from the primary optimum
similarly. This is the role played by the BM diffusion on the right-
hand side of Eqn 2. Overall, another way to think about the OU
process is that each lineage in the same environment is a somewhat
independent evolutionary replicate adapting toward the same
primary optimum (which we refer to as simply ‘optimum’
hereafter for brevity). All of these lineages deviate in their own

2

)
(@)}
9
je
(2]
©
-+
c
Q
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_



RESEARCH ARTICLE

Journal of Experimental Biology (2022) 225, jeb243292. doi:10.1242/jeb.243292

idiosyncratic way, associated with other aspects of their biology that
are shared with other species to varying degrees (Hansen, 1997).

The heart of the OU process as a model of adaptation is the
idea that the current phenotype of a species results from an
evolutionary history of adaptation to different environments. A
consequence is that past adaptation may have residual effects on
current phenotypes. Adaptation is not expected to happen
instantaneously (Labra et al., 2009; Hansen, 2012), so when a
species changes environment, it may take time to adapt toward the
new primary optimum (Moen et al., 2016; Toljagic et al., 2018). The
parameter o represents the rate of movement toward the optimum.
Moreover, a more intuitive understanding of o can result from
reparameterizing it as log(2)/a=t;,, the phylogenetic half-life
(Hansen, 1997; Hansen et al., 2008). This half-life indicates the
expected time a species would take to adapt halfway from its current
phenotype toward the optimum. If o is large, the pull of the
optimum is strong, and species adapt quickly. The half-life has units
of time, so whether a half-life is considered small or large partly
depends on the length of the phylogeny studied. For example, a half-
life of 10 million years (myr) means slow adaptation on a phylogeny
1 myr long but rapid adaptation on a 100-myr phylogeny.

As a concrete example, imagine studying evaporative water loss
(EWL) rate in a lizard species that lives in a tropical dry forest.
Phylogenetic analysis suggests that the species occurred in tropical
rainforests earlier in its evolutionary history. Moreover, its current
EWL rate is approximately 75% of the distance from a typical
rainforest EWL rate (i.e. the rainforest optimum) towards a typical
dry-forest EWL rate (i.e. the dry-forest optimum). This result could
stem from an early shift to the dry forest coupled with a weak pull
toward the dry-forest optimum (Fig. 1A). Alternatively, the species
may have colonized the dry forest more recently with a strong pull
toward the dry-forest optimum (Fig. 1B). Regardless, the history of
adaptation of a species may result in a phenotype that is not close to
the primary optimum of its current environment (Moen et al., 2016;
Toljagic et al., 2018). Interestingly, in this way the OU process helps
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explain variation among species adapting to the same environment
(Fig. 1). It also accommodates the expectation that evolutionary
history matters when interpreting adaptation (Lauder and Liem,
1989; Lauder, 1990).

This explicit modeling of adaptation to differing environments
throughout the history of a species is the major difference between
the Hansen model and BM. This difference leads to two key
interpretational problems when using BM in studies of adaptation.
First, even when species change environments throughout their
history, they will never be modeled as better adapted to one versus
the other. BM only allows correlated changes between a phenotype
and its environment, rather than phenotypic tracking to changes in
environment (Hansen and Orzack, 2005; Hansen et al., 2008). So if
the phenotype of a species is far from the optimum of its current
environment and then the species changes environment, its
phenotype will be modeled as equally far from the optimum of its
new environment. This would occur even if a species were already
close to the optimum of its new environment, which paradoxically
may have been the cause of changing environment in the first place
(i.e. high fitness in an environment may promote colonization of
that environment). This property of BM has been called inherited
maladaptation (Hansen and Orzack, 2005; Hansen et al., 2008).

Second, common approaches that often use BM to model species
non-independence, such as independent contrasts (Felsenstein,
1985) and phylogenetic generalized least squares (PGLS; Martins
and Hansen, 1997), only incorporate the phylogeny in terms of
residual variation around a fitted relationship, not in estimating the
relationship itself (Martins and Hansen, 1997; Hansen and Orzack,
2005). Many researchers do not distinguish this important detail,
instead expecting that any kind of similarity among species should
be accounted for in a phylogenetic analysis (Revell, 2010; Hansen
and Bartoszek, 2012). Yet the phenotypes of closely related species
may also be similar because they occur in and are adapting to a
similar (or the same) environment as a shared common ancestor
(Labra et al., 2009). Such inherited similarity in environment should

Fig. 1. Simulation example of three ways the Ornstein—
Uhlenbeck (OU) process can explain the distinction between a
primary optimum (6) and species’ values (their own optima). In A,
species start in an environment whose primary optimum is 0 (lower
dashed line). After 20% of their history, they shift to a new
environment with a primary optimum of 1.0 (upper dashed line).
Based on the o chosen for simulation, species’ phenotypes are
expected to be near 0.75 (the arrow) after the next 80% of their
history. Viewed alternatively, the phylogenetic half-life, In(2)/c., is 0.4:
species move on average half the distance from 0 to 1 (i.e. 0.5) after
0.4 units of time, then another half (from 0.5 to 0.75) in the next 0.4
units. Variation across lines represents stochasticity in the process,

0 0.2 0.4 0.6 0.8

Trait value

B Later shift, stronger o
1.00

as represented by 25 simulation replicates, each with their own
distinct history. In B, species adapt to 0 for the first 80% of their
history, then shift to the new environment and quickly move toward
1.0 (i.e. ais larger, with a half-life of 0.1). Both A and B have the same
stochastic parameter value (c2), but variance is higher in A because
both 62 (same in A and B) and o. (higher in B) affect the variance of the
OU process (Hansen, 1997). These two graphs thus show that
individual species optima may differ from the primary optimum of their
current environment owing to (1) slow adaptation despite a long
history in the environment (A), (2) a short history in an environment
despite fast adaptation (B) or (3) unmodeled factors, represented by
the stochastic component (both A and B). In practice, all three factors
are likely to be at play (Hansen, 1997, 2014; Moen et al., 2016;
Toljagic et al., 2018). Note that when one considers multiple species,
the stochastic component representing unmodeled factors will be

1.0

0.4 0.6
Relative time

1.0 somewhat shared among closely related species.
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not be removed by a statistical model (Hansen and Bartoszek, 2012;
Taylor and Thomas, 2014). Doing so causes a misfit of the adaptive
relationship (Hansen and Orzack, 2005; Hansen et al., 2008; Labra
etal., 2009) and high Type-I error rates (Revell, 2010). OU methods
explicitly account for this shared adaptation, as does the common
approach of using PGLS to simultaneously estimate a regression
line and phylogenetic signal (Revell, 2010; Hansen and Orzack,
2005). However, the latter approach still suffers from the problem of
inherited maladaptation.

Overall, the Hansen model solves many of the problems of
improper modeling of the biological process of adaptation. BM-
based models are simpler to implement, but they tend to focus on
statistical fixes and do not properly account for the adaptive process.
We have described the Hansen model in its simplest form for testing
adaptation: environments differ in primary optima (8) but not in rate
of approach to the optima (o) or rate of stochastic evolution (c?).
Likewise, we demonstrate the model’s use for studying adaptation
in this framework. However, more recent extensions to this model
include continuous environments (Hansen et al., 2008), ANCOVA-
like designs (Escudero et al.,, 2012), distinct oo and o> across
environments (Beaulieu et al., 2012), and multivariate applications
(Bartoszek et al., 2012). Moreover, these methods are provided in a
wide array of R packages that vary in their implementation details
and options (O’Meara and Beaulieu, 2014). We return to these
extensions, as well as limitations and challenges of the Hansen
model, in the Discussion.

Case study: thermal physiology in hylid treefrogs

The latitudinal biodiversity gradient is a pattern of declining species
diversity from tropical to temperate latitudes (Willig et al., 2003;
Hillebrand, 2004; Mittelbach et al., 2007; Mannion et al., 2014;
Pontarp et al., 2019). A key hypothesis for explaining this gradient
is that species have rarely dispersed from the tropics to the temperate
zone because of ecological niche conservatism (Farrell et al., 1992;
Ricklefs and Schluter, 1994; Wiens and Donoghue, 2004), meaning
lineages do not adapt to novel environments outside their native
range. Species distribution models of geographic range limits have
shown that temperature seasonality and cold extremes are the key
climatic factors limiting colonization of the temperate zone (Willig
et al.,, 2003; Wiens et al.,, 2006). However, the physiological
constraints that cold temperatures impose are often unclear (Chown
etal., 2004; Gaston et al., 2009; Bozinovic et al., 2011; Spicer et al.,
2019).

Thermal tolerance (e.g. surviving cold temperatures) and the
effects of temperature on functional performance (e.g. in
locomotion) are two strong candidates for explaining how
physiology may limit colonization of the temperate zone (van
Berkum, 1988; Bozinovic et al., 2011). First, tolerance to low
temperatures predicts northern range limits in thermally sensitive
species (Calosi et al., 2010), and terrestrial ectotherms at higher
latitudes and cooler climates tolerate colder temperatures (Snyder
and Weathers, 1975; Kimura, 2004; Sunday et al., 2011, 2019;
Bennett et al., 2021). Thermal tolerance can be represented by
critical thermal minima and maxima, which are the lowest and
highest temperatures, respectively, at which an organism loses
locomotor ability (Lutterschmidt and Hutchison, 1997). Thermal
minima and maxima are often close to absolute (i.e. lethal) limits
and have been called the point of ‘ecological death’: if an organism
cannot move, then its likelihood of survival drastically decreases
(Cowles and Bogert, 1944; Huey and Kingsolver, 1989; Sunday
etal., 2011). Lower thermal tolerances have been shown to be more
evolutionarily labile than upper tolerances (Araujo et al., 2013;

Bennett et al., 2021), and physiological traits in general tend to show
low phylogenetic signal (e.g. Blomberg et al., 2003; Hertz et al.,
2013; Krause et al., 2014). These patterns may both suggest
adaptation in lower tolerances. For example, low phylogenetic
signal in tolerances (e.g. von May et al., 2017) may result from
adaptation to a selective factor (e.g. elevation) that itself shows
relatively low signal. This is a situation where the Hansen model
excels (Labra et al., 2009; Kozak and Wiens, 2010).

Second, in ectotherms, locomotor performance must be
maintained at high levels despite varying body temperatures
(John-Alder et al., 1988; van Berkum, 1988; John-Alder et al.,
1989; Bozinovic et al., 2011). For example, high-latitude species
have lower minimum field body temperatures (John-Alder et al.,
1988), and such species and populations often perform better at cold
temperatures than species from lower latitudes (John-Alder et al.,
1988; Wilson, 2001; Li et al., 2018). Additionally, the breadth of
temperatures at which organisms perform well usually increases
with latitude (Navas et al., 2008), consistent with the increase in
temperature variation at higher latitudes (Sunday et al., 2011). These
results suggest that selection favors broad performance curves in
temperate ectotherms in order to function well at cold temperatures
(John-Alder et al., 1988; van Berkum, 1988), which may
consequently affect biogeographic dispersal.

Treefrogs of North and South America (Amphibia: Anura:
Hylidae) are an excellent group for addressing physiological
evolution associated with the latitudinal diversity gradient. They
occur at both high and low latitudes (temperate and tropical
regions), with most species in the tropics (Duellman, 1999).
Moreover, five hylid clades have northern range limits in Mexico,
yet only one of them — Hylini, also known as the Middle American
clade — has colonized the temperate zone (Smith et al., 2005, 2007,
Wiens et al., 2006; Moen et al., 2009). By examining how
physiology changed in Middle American hylids upon colonizing
the temperate zone, we can infer what may have historically limited
other clades from colonizing. Such factors may also be applicable to
many other organisms.

Previous studies of thermal physiology and biogeography in
anurans have shown broader thermal performance curves (TPCs) in
cooler climates (Renaud and Stevens, 1983; John-Alderet al., 1988;
Wilson, 2001). Moreover, critical thermal minima (CT,,;,) decrease
as latitude increases (Brattstrom, 1968; Layne and Romano, 1985;
John-Alder et al., 1988). Recent studies have examined the
evolution of thermal tolerances in anurans (von May et al., 2017,
2019). However, the joint evolution of TPCs and CT,,,, and
particularly their role in historically limiting the transition of
tropical anuran lineages into the temperate zone, has not been
studied. More broadly, only one study has compared the evolution
of'both these characteristics as they relate to latitudinal differences in
climatic niche, in Drosophila (MacLean et al., 2019).

Here, we examined the evolution of physiology in temperate and
tropical hylid frogs. We estimated the CT,y;, of six temperate and six
tropical species in the Middle American clade. We then estimated
TPCs in jumping for each species and calculated the lower
temperature (L80) at which the performance of each species
significantly declined. We used the OU model of adaptation to test
whether broad TPCs, higher cold tolerance, both or neither evolved
when hylid frogs colonized the temperate zone from the Neotropics.

MATERIALS AND METHODS

Sampling

We sampled species evenly across the Middle American clade
(Hylini) of the frog family Hylidae (Fig. S1; Wiens et al., 2005;
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Faivovich et al., 2018). This clade is largely endemic to Middle
America (Mexico to Panama), but it includes species in temperate
North America, Asia and Europe. In the temperate zone, we
collected six species from Oklahoma, Texas and Arkansas, USA,
which included three early-spring breeders (Pseudacris fouquettei,
Pseudacris crucifer and Acris blanchardi) and three late-spring
breeders (Hyla cinerea, Hyla avivoca and Hyla arenicolor). These
two clades independently colonized the temperate zone (Smith
etal., 2005) approximately 57 and 44 million years ago, respectively
(Jetz and Pyron, 2018). In the tropics, we sampled six species from
Oaxaca, Mexico, in the municipalities of Santiago Comaltepec
(Ptychohyla zophodes, Charadrahyla nephila, Exerodonta abdivita
and Smilisca cyanosticta) and Pluma Hidalgo (Smilisca baudinii
and Tlalocohyla smithii). These species represented six of the eight
major clades of the Middle American clade (Fig. S1; Smith et al.,
2007; Faivovich et al., 2018). We collected adult male frogs at night
during the breeding season (temperate taxa: March—June and
August 2017 and 2018; tropical taxa: June 2018; see Supplementary
Materials and Methods). We sampled 5-7 individuals for most
species (Table 1). These sample sizes are consistent with previous
comparative studies of amphibian TPCs (John-Alder et al., 1988;
Gvozdik and Van Damme, 20006).

We performed all work with appropriate collecting and animal
ethics permits. Collection permits were provided by the Oklahoma
Department of Wildlife Conservation (permit 5552719), Arkansas
Game and Fish Commission (permit 032820171), Texas Parks and
Wildlife Department (SPR-0416-112) and SEMARNAT México
(SGPA/DGVS/004473/18). All work was done under Oklahoma
State University ACUP AS-17-3.

Thermal performance curves

We examined TPCs in jumping, a frog’s primary mode of
locomotion (Gans and Parsons, 1966; Jenkins and Shubin, 1998;
Mendoza et al., 2020). Different jumping variables such as velocity
and acceleration have been shown to be positively correlated (Moen,
2019). Thus, we used peak velocity during take-off as the
performance variable for generating TPCs, and we expect results
to be similar for acceleration.

Following previous studies (John-Alder et al., 1988; Wilson and
Franklin, 2000; Wilson, 2001), we collected jumping performance
data at six different temperatures: 8, 14, 20, 26, 32 and 35°C.
Though only 3°C separated our two highest temperatures, we
selected the highest temperature based on previous anuran work on

Table 1. Species means used in comparative analyses

TPCs (reviewed in Navas et al., 2008). Moreover, we were not able
to measure performance for S. baudinii at 8°C, nor for S. cyanosticta
at 8 and 14°C, as they refused to jump (see also Navas 1996 for
similar behavior seen in other lowland tropical species). Thus, we
tested them by increasing their body temperature by 1°C each trial
until we found the minimum temperature at which they would jump
(S. baudinii >12.5°C; S. cyanosticta >16°C).

We initially housed all animals individually in the laboratory at
20°C, a typical active temperature for all study species (Duellman,
2001). We kept them at 20°C for 1 week to minimize any potential
effects of acclimation on performance (Dunlap, 1980; Renaud and
Stevens, 1983; John-Alder et al., 1988, 1989; Whitehead et al.,
1989; Wilson and Franklin, 2000), though little evidence exists for
acclimation-based performance differences in anurans (see
Discussion). We fed frogs fruit flies or crickets (based on gape
size) every other day until starting data collection, then fed them
once in the middle of the week of performance trials.

To change body temperature, we placed the frogs in a water bath
at the desired temperature until their body temperature reached the
treatment temperature, as determined with an infrared thermometer
(see Supplementary Materials and Methods for additional detail,
including demonstration that our methods did not induce thermal
shock in animals). We randomly assigned experimental
temperatures to each frog and tested one or two temperature
treatments per day, waiting at least 5 h between trials at different
temperatures. Trials generally lasted 1 week. If an individual did not
perform well at a given temperature (e.g. it fatigued before we could
obtain a video), additional days were added to retest that
temperature. Even though performance may gradually decline
when individuals are measured over the course of a week (Zug,
1985), we found similar performance at the beginning and end of
our experiments (Supplementary Materials and Methods).

We recorded jumping performance using a Fastec TS5 high-
speed camera, filmed lateral to the jump at 250 frames s~! and with
an exposure time of 500-1000 ps. We stimulated each frog to jump
by gently tapping its back leg or clapping behind it. We recorded 3—
4 jumps during a given set of trials, based on the number necessary
to obtain peak performance in previous studies (Nauwelaerts et al.,
2007; Moen et al., 2013, 2021b; Mendoza et al., 2020). We re-
established the test temperature by placing frogs in the water bath
between all jumps.

To estimate peak velocity, we digitized videos with Imagel]
v.1.52a (Schneider et al., 2012). These digitized coordinates yielded

Species Details CTin (°C) n L80 (°C) n 3
Temperate 2
Acris blanchardi Early-breeding 0.27+1.16 5 10.23 7 9
Pseudacris crucifer Early-breeding 0.64+1.26 5 12.28 7 [
Pseudacris fouquettei Early-breeding 0.56+1.02 5 10.88 6 o
Hyla arenicolor Late-breeding 5.44+0.31 8 16.46 7 'E
Hyla avivoca Late-breeding 2.86+0.26 5 14.78 9 )
Hyla cinerea Late-breeding 3.55+0.08 6 16.22 7 E
Tropical =
Charadrahyla nephila Highland 6.42+0.06 6 17.59 5 8_
Exerodonta abdivita Highland 6.33+0.27 6 10.67 6 [
Ptychohyla zophodes Highland 5.1440.23 5 12.70 7
Smilisca baudinii Lowland 8.92+0.90 3 27.45 6 "'6
Smilisca cyanosticta Lowland 6.90+0.18 5 13.74 7 P
Tlalocohyla smithii Lowland - - 16.04 1 g
We only calculated the standard errors (s.e.m.) for critical thermal minimum (CT,i,), given that the lower temperature threshold for 80% of peak jumping 5
performance (L80) was determined from a curve estimated across all individuals of each species. Samples sizes (n) for CT,, and L80 differed because we were |75
not able to collect all data from all individuals. =
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displacement-by-time data, which we smoothed using quintic
splines to reduce digitization error (Walker, 1998) in the R
package fda v.5.1.4 (Ramsay et al., 2009; https:/CRAN.R-project.
org/package=fda). We calculated velocity curves as the first
derivative of the displacement curve (Walker, 1998; Moen et al.,
2013). From the velocity curves we calculated maximum velocity
values at each temperature for each individual. We digitized
multiple videos for each individual and temperature, and we
selected the video with the highest velocity to represent peak
performance for a given individual at that temperature. In total,
we digitized, smoothed and analyzed videos from 781 jumps across
75 individuals. Finally, for each individual and temperature, we
standardized peak values to the peak performance for that individual
(across temperatures) to use in further analyses (John-Alder et al.,
1988, 1989; Herrel and Bonneaud, 2012). This standardization
reduces potential differences in absolute performance within and
across species owing to body size (Bulté and Blouin-Demers, 2006).
See Supplementary Materials and Methods for further justification.

To characterize TPCs for each species, we compared two
regression models. In these models, we regressed relative peak
performance on the measured temperature at which frogs achieved
the performance. For each species, we compared the statistical
support for quadratic and Gaussian regression functions to estimate
a single curve across all individuals within a species (Table SI;
Angilletta, 2006). Both models allow the typical hump-shaped form
of performance curves. However, the Gaussian approach can fit
TPCs better than standard quadratic regression (Angilletta, 2006).
For each species, we compared the models with AICc and their
associated weights (Burnham and Anderson, 2002). We performed
all curve-fitting analyses with base functions in R v.4.0.2 (https:/
www.r-project.org/). Comparing these two models is one of many
approaches proposed for characterizing TPCs (Angilletta, 2006;
Bulté¢ and Blouin-Demers, 2006; Rezende and Bozinovic, 2019),
which we discuss in more detail in the Supplementary Materials and
Methods.

We chose the optimal regression model for each species based on
the lowest AICc. This model was used to determine the range of
temperatures at which each species exhibited high performance. We
used the lowest temperature at which velocity dropped to 80% of
peak performance (L80; John-Alder et al., 1988) as a measure of the
lowest temperature at which a species still has high jumping
performance, following previous work (e.g. Huey and Stevenson,
1979; John-Alder et al., 1988, 1989; Navas, 1996; Angilletta et al.,
2002; Herrel and Bonneaud, 2012; Logan, et al., 2014; Kellermann
et al., 2019). We also tested alternative performance thresholds
(L70, L90 and temperature of peak performance) to examine
sensitivity of our results to our 80% threshold. Overall, we focused
on the lower end of the TPC instead of breadth of the curve, to
emphasize colonization of the (cooler) temperate zone. Moreover,
previous studies of both thermal tolerances and performance curves
in terrestrial ectotherms have shown that upper (i.e. hot) bounds
vary little with latitude (Snyder and Weathers, 1975; Addo-Badiako
et al., 2000; Sunday et al., 2011, 2019) or when comparing
temperate and tropical species (John-Alder et al., 1988; van
Berkum, 1988). Nonetheless, we also tested curve breadth,
finding nearly identical results in phylogenetic comparative
analyses (Supplementary Materials and Methods).

Cold tolerance

To test whether tolerance to cold temperatures has limited tropical
hylids from colonizing the temperate zone, we estimated each
species mean of the critical thermal minimum (CT,;,): the lowest

temperature at which an organism loses the ability to right itself
(Lutterschmidt and Hutchison, 1997). When compared with
alternative measures of tolerance (e.g. lower-lethal limit), CT;,
produces very similar results in interspecific comparative studies
(Sunday et al., 2011, 2019).

As CT,y;, trials occurred after performance trials, frogs had been
acclimated to 20°C for 2 weeks before measuring CT,;,. We first
placed frogs in a water-filled beaker, with the water level and beaker
size adjusted to submerge each frog (John-Alder et al., 1988; Mufioz
et al.,, 2014). We then placed the beaker in an ice bath, which
reduced each frog’s body temperature at a constant rate of
approximately 1°C min~! (John-Alder et al., 1988; von May
etal., 2017, 2019). This rate should produce negligible lag between
changes in water temperature and the core body temperature of small
amphibians (e.g. Near et al.,, 1990). We also used an infrared
thermometer on a subset of individuals to verify concordance of
body and water temperature when conducting trials, which was true
across body sizes. Once each frog started to reduce movement
within the water, we conducted righting-response trials every 1°C.
We removed frogs from the water and stimulated them to move by
touching their legs with a thin piece of plastic to keep them from
remaining motionless (e.g. as a defensive tactic).

To reduce measurement error, we calculated CT,y;, as the average
of two temperatures: (1) the temperature at which a frog lost its
ability to right itself within 60 s (Layne and Romano, 1985; John-
Alder et al., 1988); and (2) the immediately preceding recorded
temperature at which it could right itself. The actual CT,;, for a
given individual will lie between these two temperatures. We
collected CT,,;, data from all species except for 7. smithii, given an
unexpected death after performance trials. We used mean+ts.e.m.
CToin for each species in phylogenetic comparative analyses.

Phylogenetic comparative analyses

We extracted a tree of our 12 study species from the amphibian
phylogeny of Jetz and Pyron (2018). That study represents the most
comprehensive estimate of anuran phylogeny available. It also has
branch lengths in units of time, which are the most appropriate units
for comparative analyses (Butler and King, 2004; O’Meara et al.,
2006). Jetz and Pyron (2018) presented a Bayesian posterior
distribution of time-calibrated trees, from which we calculated a
consensus for our 12 species. We first used the VertLife website
(www.vertlife.org/phylosubsets) to download 1000 trees from the
posterior distribution, each pruned to include only our 12 taxa. We
then used TreeAnnotator (Bouckaert et al., 2019) to calculate a
single maximum clade credibility (MCC) tree, with branch lengths
estimated as their mean values across the posterior distribution of
trees (Fig. 2). All trees in this posterior distribution had identical
topologies for our 12 taxa (i.e. posterior probability of 1.0 for all
nodes) and showed low variation in branch lengths, suggesting that
phylogenetic uncertainty would not influence our results. We thus
used the resulting MCC for all analyses (see Appendix S3 in Moen
et al., 2021a).

We compared four models of phenotypic evolution to test
whether each physiological trait (CT,,,, L80) adapted with the
colonization of the temperate zone from the tropics. We conducted
separate analyses on the two traits to assess them individually. We
compared BM and three different OU models. Two of our OU
models explicitly modeled change in selective environments, or
regimes (Hansen, 1997; Butler and King, 2004), such as changing
from the tropics to the temperate zone. A strong fit to a BM model
would indicate that similarity among species is best described by the
amount of their shared evolutionary history. Support for our second
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Fig. 2. Phylogeny of Middle American treefrogs in this study. Topology and
branch lengths come from a maximum clade credibility consensus tree of the
study taxa pruned from Jetz and Pyron (2018); all branches are supported by a
posterior probability of 1.0. Temperate lineages are in gray and tropical
lineages are in black. Tropical lowland and highland lineages are represented
by dashed and solid branches, respectively. The Middle-American clade’s
sister group, Lophiohylini, is shown for comparison, with the triangle
representing a larger, multi-species clade. See Fig. S1 to show how our 12 taxa
fit within a more broadly sampled tree.

model, a single-optimum OU process (OU1), would indicate that
species are adapting to a single selective regime for the whole clade.
For our third model, we fit a two-regime OU model (OU2) in which
one selective regime was for temperate species and one for tropical.
Support for this third model would favor the hypothesis that CT,;,
or L80 changed the two times that hylid clades colonized the
temperate zone (Fig. 2).

Tropical species of the Middle American clade can be further
subdivided into species that inhabit highland and lowland tropical
climates (Smith et al., 2007). Given distinct seasonal climatic
zonation along elevational gradients in the tropics (Janzen, 1967,
Polato et al., 2018), one might expect that each climate has a
separate optimum phenotype (Navas et al., 2008). Thus, our fourth
model (OU3) had three OU regimes: temperate, tropical highlands
and tropical lowlands. We consider only one temperate regime
because five of our six temperate species occur only at low
elevations, and we collected the sixth species (Hyla arenicolor) at
low elevations. We categorized each tropical species as highland or
lowland based on elevational distributions reported in Duellman
(2001) and AmphibiaWeb (2021). Species with an elevational
midpoint of 500 m and below were considered as lowland, whereas
species with an elevational midpoint of 1000 m and above were
considered highland. Importantly, we collected all highland species
in this study above 1000 m and all lowland species below 500 m.

To compare models of phenotypic evolution of CT,,;, and L80,
we used the R package OUwie v.2.6 (Beaulieu et al., 2012; https:/
CRAN.R-project.org/package=OUwie) to calculate likelihood
support and parameter values. We then compared models based
on AICc and their weights (Burnham and Anderson, 2002). Models
2—4 only differed in OU regimes and thus optima. While optima can
be estimated well at small sample sizes (Beaulieu et al., 2012; Ho

and Ané, 2013, 2014a; Cressler et al., 2015), estimating o —
particularly different o for each regime — is much more challenging
(Beaulieu et al., 2012; Ho and Ané¢, 2013). Therefore, we held o and
o2 constant across regimes. We assumed the stationary distribution
for the ancestral phenotypic state in OU models (Ho and Ané,
2014a), given that this assumption produced more reasonable
optima values in OU2 and OU3. Models OU2 and OU3 required
assigning internal node states for area (tropical and temperate) and
elevation (lowland and highland), respectively. We assigned these
states based on previous estimates for the entire Middle American
clade (Smith et al., 2007; Moen et al., 2009; Pyron, 2014), which we
map on the phylogeny in Fig. 2 and describe in detail in the
Supplementary Materials and Methods.

For CT,,,, we analyzed species means with their standard errors
(s.e.m.) to account for intraspecific variation and measurement error
(Hansen and Bartoszek, 2012; Silvestro et al., 2015). We calculated
standard errors using the small sample size method of Ives et al.
(2007), which involves calculating a pooled estimate of sampling
variance and allows assigning standard errors to species with only a
single individual (see Ives et al., 2007, their Appendix S3). We
could not calculate standard errors for L80 because species values
were derived from a curve fit through data of all individuals. To test
the potential consequences of having no standard errors for L80, we
compared model fits with and without standard errors for CT,;,
(Supplementary Materials and Methods). As a further test of the
robustness of our results, we repeated analyses of L80 after
excluding data from Tlalocohyla smithii, given that its TPC was
based on a single individual and thus more likely to be affected by
measurement error.

RESULTS

General patterns in thermal performance curves

We found that the majority of the species-level performance curves
were unimodal curves (Table S1), with performance peaking at
intermediate to high temperatures (20-35°C) and decreasing
towards extreme temperatures (Figs 3 and 4). However, two of the
12 performance curves were best fit by parameters that produced a
monotonically rising curve (Table S1, Figs 3 and 4), showing the
highest performance at the highest temperatures.

In the temperate zone, the lowest temperatures at which velocity
dropped to 80% of peak performance (L80) ranged from 10.23 to
12.28°C for early-spring breeders (Acris blanchardi, Pseudacris
crucifer and P. fouquettei). Late-spring breeders (Hyla cinerea,
H. avivoca and H. arenicolor) showed higher L80 values, ranging
from 14.78 to 16.46°C (Table 1, Fig. 3). L80 values for tropical
highland and lowland species overlapped, with species means
ranging from 10.67 to 17.59°C for highland species and from 13.74
to 27.45°C for lowland species (Table 1, Fig. 4).

General patterns in thermal tolerance (CT,in)

In the temperate zone, CT,,;, was lower in early-spring breeders
(0.27-0.56°C) than in late-spring breeders (2.86-5.44°C; Table 1).
Likewise, CT,,;, among highland tropical species (5.14—6.42°C) did
not overlap with that of lowland species (6.90-8.92°C; Table 1).
However, differences in CT,,;, in tropical lowland and highland
species were generally much smaller than between early- and late-
breeding temperate species (Table 1). Moreover, nearly all tropical
species showed higher CT,,;, values than temperate species (Table 1).

Evolution of L80 and CT,,;,

BM was the most highly supported model for L80, with an AICc
weight of 0.778 (Table 2). This means that similarity among species
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Fig. 3. Thermal performance curves (TPCs) used to estimate the lower temperature threshold for 80% of peak jumping performance (L80) of six

temperate species. Species in the top row are early-spring breeders, whereas those in the bottom row are late-spring breeders. Gray lines represent TPCs, with
the functional form of the curve following the optimal model for each species (Table S1). Black dots represent individual performance. White dots represent mean
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unitless. Photos by A.R.H. (Pseudacris fouquettei) and D.S.M. (all others).

was best described by shared evolutionary history, rather than
biogeographic region. The only other model with appreciable
support was the single-optimum OU1 model (AICc weight=0.179),
which means species are adapting to a single phenotypic optimum
for the whole clade. We found nearly identical results for L70, L90,
temperature of peak performance, and the lower half of thermal
performance breadth (Table S2). Furthermore, our results were the
same with and without Tlalocohyla smithii (Table S3), the species
whose TPC we estimated from just one individual (Fig. 4). Thus,
our results were robust to both the method of characterizing jumping
performance at low temperatures, as well as to inclusion of a species
whose TPC was based on few data.

We found that CT,,;, decreased when hylids colonized the
temperate zone. The model with the most support for CT,
evolution was OU2 (AICc weight=0.729; Table 2), which had one
CT i optimum for temperate species (—1.40°C) and another, much
higher, for tropical species (6.50°C; Table 3, Fig. 5). Results were
nearly identical when excluding standard errors (Table S4),
suggesting that L80 analyses were likewise robust to exclusion of
standard errors.

DISCUSSION

In this study, we tested how thermal tolerances and performance
curves evolved with the colonization of the temperate zone from
the tropics in six tropical and six temperate hylid treefrog species.
We found that CT,,;, most likely adapted by decreasing upon
colonization of temperate climates. However, L80 showed no

adaptation associated with biogeographic region. Our results
suggest that increasing tolerance to low temperatures was a key to
colonizing the temperate zone, whereas improving jumping
performance at low temperatures was not. Here, we discuss these
results further and address the prospects and challenges of
implementing the OU process in studies of physiological adaptation.

Physiology of colonizing the temperate zone

We found that colonization of the temperate zone led to an adaptive
reduction in CT,;, in Middle American treefrogs. In a previous
study on the latitudinal gradient of species diversity in hylid frogs,
Wiens et al. (2006) examined the northern range limits of four hylid
clades that have colonized tropical Middle America from South
America, but have not reached the temperate zone. They showed that
these limits were associated with higher temperature seasonality and
lower annual temperature extremes. Our results suggest that the
ecophysiological explanation for this pattern is niche conservatism
in CT,,;, in tropical hylid frogs, limiting colonization of the
temperate zone from the tropics.

Despite niche conservatism in most hylid clades, Middle
American hylids colonized temperate North America twice from
the lowland tropics (Smith et al., 2005; Moen et al., 2009). The
Acris—Pseudacris clade arrived first, and species in this clade are
generally early-spring breeders. For example, Pseudacris crucifer
becomes active during winter months and can tolerate freezing
temperatures (Schmid, 1982; Dodd, 2013), which is consistent with
our CT,;, results for species in this clade (Table 1). In contrast, Hyla
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colonized temperate North America later and comprises late-spring
breeders (Dodd, 2013). Species in this clade have less cold tolerance
than members of the Acris—Pseudacris clade, but more tolerance
than tropical species (Table 1). However, how freezing tolerance
relates to CT;, across species remains unclear. In particular, Hyla
versicolor and H. chrysocelis can survive freezing temperatures
(Schmid, 1982; Costanzo et al., 1992; Storey and Storey, 1992),

Table 2. Models of physiological trait evolution

Variable: model k InL AlCc w;
Tolerance (CTyin)
Brownian motion 2 -24.720 54.941 0.209
OU single optimum 3 -25.870 61.170 0.009
ou2 4 —18.888 52.442 0.729
Oou3 5 -17.843 57.686 0.053
Jumping performance (L80)
Brownian motion 2 —-35.342 76.018 0.778
OU single optimum 3 -34.977 78.953 0.179
ou2 4 -34.220 82.154 0.036
Oou3 5 -32.838 85.677 0.006

We compared four models, including Brownian motion and three Ornstein—
Uhlenbeck (OU) models. OU single optimum: one optimal temperature for all
species. OU2: separate temperature optima for tropical and temperate
lineages. OU3: separate temperature optima for temperate, lowland tropical
and highland tropical lineages. k, number of free parameters in the model; In L,
log-likelihood; AlICc, corrected Akaike information criterion; w;, AICc model
weight. Note that Brownian motion is not nested within OU models in the way
we estimated them (O’Meara and Beaulieu, 2014) and so may not necessarily
have a lower log-likelihood, as for CT,,. For each variable, we indicate the
optimal model (i.e. the lowest AICc and highest w;) in bold.

despite being in the temperate clade with higher CT,;, than the
Acris—Pseudacris clade. Whether other Hyla species can survive
freezing is an intriguing direction for future work.

In contrast to CT,,;,, biogeographic region did not affect L80
evolution. Our results resemble those of MacLean et al. (2019), who
found that cold tolerance was associated with latitude in Drosophila,
but aspects of TPCs (e.g. breadth, optimal temperature) were not. A
similar contrast between tolerances and performance has also been
found in actively thermoregulating taxa (van Berkum, 1988).
Though frogs generally do not thermoregulate (Navas, 1996; Navas
et al., 2008), they may use seasonal activity as a long-term
thermoregulation strategy, waiting for optimal temperatures before
becoming active (e.g. to reproduce, locate prey, disperse). But
without migration, individuals must tolerate all climatic conditions

Table 3. Parameter estimates for optimal models of CT,,;,, and L80
evolution

Variable CThin L80

Optimal model ou2 Brownian motion
o? 3.378+0.843 24.963+0.408
o 1.063+0.880 -
Ancestral state - 13.959+2.051
Temperate 6 -1.401+1.362 -
Tropical 6 6.504+0.739 -

o2 is the rate of stochastic evolution, with units of °C2. Ancestral state is in °C
and was not estimated for OU models (Ho and Ané, 2014a). In OU models, 8 is
the primary optimum in °C for each climate regime and o is the strength of pull
towards optima, with units of millions of years=". All values represent
maximum-likelihood estimates with one standard error.
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Fig. 5. Boxplot showing the distribution of critical thermal minimum
(CTmin) and L80 for tropical and temperate study species means (Table 1).
(A) CTmin and (B) L80. Lines in the center of boxes are medians. Lower and
upper edges of boxes are the 25 and 75% quartiles, respectively. Whiskers
represent the most extreme species means for each group. Asterisks for CT i,
indicate the OU optima for each region’s taxa, based on the OU2 model.

during the whole year, even if inactive during much of that time
(Ludwig et al., 2015). Thus, selection may more strongly favor
tolerance to low temperatures upon colonizing the temperate zone
than the ability to function at colder temperatures.

Given that Hyla and members of the Acris—Pseudacris clade
show largely overlapping distributions (Duellman and Sweet,
1999), why do they differ in CT,,;, and L80 (Table 1)? The
answer might relate to time since colonization and evolutionary
‘starting point’. The majority of Middle American hylids are found
in the tropics at high elevations (Duellman, 2001), with lowland
species nested within largely highland clades (Smith et al., 2007).
Thus, species with physiology fitting highland climates may have
made the initial colonization of Middle America, then later
expanded to lowlands (Wiens et al., 2006; Moen et al., 2009).
The Hyla clade that most recently colonized temperate North
America (Fig. 2) shares its most recent common ancestor with the
Smilisca—Tlalocohyla clade, the clade with the highest CT,;,. This
could explain why Hyla generally showed higher CT,y;, and L80
than members of the Acris—Pseudacris clade: their evolutionary
starting point was higher, and they have been adapting to a
temperate climate for less time. We note that this ‘time for
adaptation’ forms an integral part of the OU model of adaptation
(Fig. 1; Butler and King, 2004; Moen et al.,, 2016). Other
approaches (e.g. phylogenetic ANOVA) assume all lineages have
been in their current environment for their entire history (Hansen
and Orzack, 2005; Hansen, 2014), potentially compromising the
study of adaptation.

Lastly, we acknowledge that future work should consider
additional species and a higher maximum temperature for
characterizing TPCs. While our results clearly favored different
CTpyin optima for temperate and tropical hylids, the optimum for
temperate taxa was below freezing (—1.40°C). This value is warmer
than lethal thermal minima for many temperate anurans (Brattstrom,
1968), and thus reasonable, yet it was lower than the CT,y;, of any
species we measured here (Table 1). Moreover, additional
simulations suggested that increasing species sampling may
increase our ability to distinguish OU3 from OU2 and allow for

more precise estimates of OU optima (see Supplementary Materials
and Methods, Fig. S2). We also found monotonically rising TPCs in
two tropical lowland species (Fig. 4), which means the temperature
of their peak performance may be higher than our highest tested
temperature (35°C). If true, their L80 values here would be
underestimates. Future work should thus consider higher
temperatures, particularly for tropical lowland species.

Remaining questions in thermal physiology and
biogeography

Both our approach and our results raise several questions for future
research on the physiology underlying colonization of the temperate
zone. First, are the relevant factors in hylids the same as those
important in other organisms, including other families of anurans?
Members of two additional families have also colonized temperate
North America from the Neotropics: Bufonidae (Mendelson et al.,
2011; Pyron, 2014; Portik and Papenfuss, 2015) and Microhylidae
(Streicher et al., 2012; Pyron, 2014). These families differ from
hylids in ecology and climatic niche (Dodd, 2013; Moen and Wiens,
2017). Thus, studying them could address whether tolerances matter
more than locomotor performance (present study; MacLean et al.,
2019), or if instead our results are specific to particular aspects of
ecology. Moreover, examining additional taxa could determine the
importance of time of colonization, as hypothesized above for Hyla.

Second, what role do other aspects of physiology play in
colonizing the temperate zone from the tropics? Metabolism has
often been compared in temperate and tropical amphibians. These
studies have shown that low-temperature metabolism is higher in
temperate than in tropical taxa (Brattstrom, 1968; Hutchison et al.,
1968; Whitford, 1973; Snyder and Weathers, 1975; Feder, 1978,
1982; Walton, 1993; Navas, 1996). Future evolutionary studies that
test adaptation in metabolism may reveal an additional important
factor in determining patterns of species richness.

Finally, what role does acclimation play in colonization of the
temperate zone? In this study we accounted for acclimation by
holding individuals at a constant temperature for 1 week (TPCs) or
2 weeks (CTy,;,) prior to data collection, following previous studies.
Moreover, most studies show no acclimation to cold temperatures in
locomotor performance in adult anurans (Putnam and Bennett,
1981; Whitehead et al., 1989; Knowles and Weigl, 1990; Wilson
and Franklin, 2000; but see Padilla et al., 2019), particularly in
non-aquatic species (Wilson et al., 2000), which we studied
here. However, nearly all anuran acclimation studies have been
performed on temperate species. A synthesis across ectothermic
taxa suggested that tropical organisms may show a higher capacity
for physiological acclimation (Seebacher et al, 2015), but
comparisons of temperate and tropical amphibians show the
opposite pattern in metabolism (Feder, 1978, 1982). Moreover,
acclimation effects on CT,,,, in anurans seem much weaker in
tropical species (Brattstrom, 1968; Mahoney and Hutchison, 1969;
Christian et al., 1988; Navas et al., 2008), and no work of which we
are aware has examined how acclimation affects CT,;, in anurans. If
acclimation has been important in past colonization of the temperate
zone in hylids, we would expect that lineages closely related to
successful colonists (e.g. Smilisca closely related to Hyla; Fig. 2)
would show high propensity to reduce CT,y;, after acclimation to
lower temperatures. For example, Smilisca baudinii has a broad
climatic distribution, from the tropical lowlands (where we
sampled) to populations in south Texas, USA. Understanding
whether this broad distribution is due to genetic change, plasticity or
both could clarify the role of acclimation in colonization of
temperate climates.
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Prospects and challenges of the Hansen model in
comparative physiology

The Hansen model has seen limited use in comparative physiology.
Part of the reason is that analyzing the model is less direct than
analogous approaches, such as phylogenetic ANOVA. Uncertainties
in best practices (Ho and Ané, 2014a; O’Meara and Beaulieu, 2014)
lead to further confusion, and statistical properties of the method
have been questioned in recent years (e.g. Boettiger et al., 2012; Ho
and Ané, 2014a). Thus, we describe here six key hurdles to using the
Hansen model, and we outline strategies to explicitly address these
issues in an empirical study. We also provide R Markdown tutorials
to help readers understand how to use the model and interpret results
(Moen et al., 2021a, Appendices S10, S14). Our discussion reveals
that many problems are less severe than often characterized in the
literature, and we remain optimistic about more widespread use of
the model to test adaptation.

(1) Ancestral-state estimation

A key implementation challenge of the Hansen model with discrete
environments is specifying environments at internal nodes. Here,
we sampled few species from our clade of interest (12 of 197
species; AmphibiaWeb, 2021). Thus, we used previously estimated
states based on a much larger sample (Moen et al., 2009) to prevent
inaccuracy owing to insufficient sampling (Salisbury and Kim,
2001). However, estimation of internal states for OU models is not
trivial (e.g. Moen et al., 2016), and such estimates have been
criticized for their uncertainty or inaccuracy (Cunningham et al.,
1998; Cunningham, 1999; Losos, 1999). An increasingly adopted
solution to overcome these challenges is using Bayesian stochastic
character mapping to generate many possible character histories
(Huelsenbeck et al., 2003; Bollback, 2006). One can then fit the
Hansen model on each character history and integrate results over
the uncertainty of internal states (e.g. Price et al., 2015; Grossnickle
et al., 2020; Corn et al., 2021). Alternatively, a likelihood-based
approach can be used to account for internal-state uncertainty, as
outlined by Cressler et al. (2015). However, implementation of this
approach is less straightforward than stochastic character mapping.
Regardless of the strategy chosen for internal-state estimates, the
exponential decay in the influence of adaptation to past
environments means that a strong adaptive pull (i.e. high o) will
quickly erase the influence of internal node states (Hansen, 1997;
Butler and King, 2004). Therefore, when o is high, OU results are
likely robust to ancestral-state uncertainty (Moen et al., 2016).

(2) Different statistical designs

Some types of predictor variables (e.g. continuous) and more
complicated statistical designs (e.g. ANCOVA, multivariate) will
present their own challenges. In particular, multivariate OU models
(i.e. multiple traits adapting to the same environments) can require
estimation of additional parameters (Bartoszek et al., 2012). It is
also unclear whether the implementation of the multivariate, multi-
optimum model (Bartoszek et al., 2012) shares some of the same
statistical problems of multivariate, single-optimum OU models
(Adams and Collyer, 2018). Further model developments, such as
those of Clavel and Morlon (2020) and Clavel et al. (2019), may be
necessary to ensure optimal statistical performance of OU models.

(3) Data from few species

Studies in comparative physiology are often limited by number of
study species, given the difficulty of data collection (Lauder, 1990,
2003; Garland et al., 2005). For example, we collected and digitized
high-speed video of 781 jumps at five field locations across two

countries to obtain peak jumping performance of 75 individuals at
six temperatures. Yet this effort rendered L80 values for just 12
species for our phylogenetic comparative analyses. Given that the
simplest version of the Hansen model requires estimating more
parameters than equivalent PGLS or ANOVA tests, researchers
have right to worry when they have data for few species (Cooper
etal., 2016a). However, the effect of sampling is more nuanced than
simply comparing the number of parameters to species. For
example, o may be hard to estimate regardless of species number
(Beaulieu et al., 2012; Ho and Ané, 2013, 2014a; Cressler et al.,
2015), but the optima can be estimated well with few species (Ho
and Ané, 2013; Cressler et al., 2015), particularly when at least one
regime convergently originates two or more times in the phylogeny
(Ho and Ané, 2014a). Simulations have shown that effect size,
rather than sample size per se, may matter more for estimating
optima (Ho and Ané, 2013, 2014a) and for comparing models that
only differ in number of optima (Boettiger et al., 2012; Cressler
et al., 2015). Our empirical results were consistent with these
simulation results: with just 12 species, we found strong evidence
for an OU model with multiple optima in CT,;, (Table 2) because
these optima were distinct (Table 3, Fig. 5). Moreover, parametric
bootstrapping showed that comparison of our top OU model (OU2)
with the simpler model with the highest support (BM) was
statistically robust (Fig. S2), further suggesting that concern about
small sample sizes really depends on the particular dataset. More
generally, because optima are often the focus of model comparison
(e.g. present study; Scales et al., 2009; Collar et al., 2011,
Grossnickle et al., 2020), these results are promising for
comparative physiology.

(4) Problems with model selection and parameter estimation

One criticism of model selection in OU studies is that even modest
measurement error (if ignored in the analysis) can bias AIC-based
model comparison to favor a single-optimum OU model over BM
(Cooper et al., 2016b). To avoid this problem, most OU
implementations accommodate measurement error (Beaulieu
et al., 2012; Hansen and Bartoszek, 2012; Ho and Ané, 2014b).
Moreover, the multi-optimum Hansen model shows much less error
in model selection than comparing single-optimum OU models to
BM (Cressler et al., 2015). A second criticism is that AIC-based
model selection can be biased to favor more complex OU regime
mappings, elevating Type-I error rates (Boettiger et al., 2012). As
we have shown (Fig. S2), this is an empirical problem that depends
on each individual dataset. Many of our own empirical studies have
shown highest statistical support for models of intermediate, rather
than highest, complexity (present study; Moen et al., 2016; Moen,
2019). Nonetheless, researchers can conduct parametric
bootstrapping analyses to examine how much information exists
in their data to distinguish models (Boettiger et al., 2012). A third
statistical criticism is that parameter estimates can be imprecise,
even with many species. o and 6> can be hard to estimate separately,
as high values of both parameters may be as likely as low values of
both (O’Meara and Beaulieu, 2014). One solution is to focus on the
estimate of stationary variance, which is a ratio of the two (¢%/201),
rather than the two parameters separately (e.g. Price et al., 2015).
Estimating multiple o values is challenging for even very large
datasets, so o may be best left constant across regimes when
analyzing small datasets (Beaulieu et al., 2012; O’Meara and
Beaulieu, 2014). Finally, when selective regimes originate only a
single time on a tree, different optima can be impossible to
distinguish (Ho and Ané, 2014a), so it is important to ensure at least
one regime occurs on different parts of the tree. In summary, while
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researchers undoubtedly need to be aware of these concerns, many
of them can be addressed with careful analysis.

(5) Testing the robustness of results

Currently, several tools are available to directly test the robustness of
the results obtained from the Hansen model. First, the R package
OUwie allows users to conduct eigenanalysis of the likelihood
surface for o and o to verify whether their estimates are stable.
Second, both packages ouch and OUwie allow parametric
bootstrapping of optimal models to calculate 95% confidence
intervals for parameters (Scales et al., 2009; Boettiger et al., 2012).
Third, parametric simulations to test statistical power and error rate
are conveniently implemented in the R package pmc (Boettiger
et al., 2012), which uses ouch to fit OU models. Such simulations
are less developed to work with OUwie, so we have written a
function that works similar to pmc but simulates data and analyzes
models with OUwie. We include this function in Appendix S5
(Moen et al., 2021a) and demonstrate its use in the Supplementary
Materials and Methods, where we examine the statistical properties
of our dataset with parametric bootstrapping. We also recognize that
methods are more frequently used when more resources exist to
guide researchers. Thus, we demonstrate with tutorials how to use
the three strategies to test for robustness of results (Moen et al.,
2021a, Appendices S10, S14). Moreover, we encourage
collaboration between researchers collecting empirical data and
those more experienced in phylogenetic comparative methods. Such
collaboration will lead to development and testing of more robust
analyses and additional biological insight (Lauder, 2003; Cooper
et al., 2016a; Waldrop and Rader, 2020).

(6) Potential misuse of the OU process

We caution against using the OU process in standard PGLS
regression (Cooper et al., 2016b), as such analyses model evolution
very differently than described in this paper (Hansen, 2014; Pennell,
2015). Instead of modeling adaptation of phenotypes to adaptive
optima, typical PGLS analyses use the OU process to model
residual variation around a regression line. This use has the same
problems that we described in the Introduction for BM: inherited
maladaptation and inability to simultaneously estimate the mean
and error structure of a model (Hansen and Orzack, 2005; Hansen,
2014). When testing adaptation of a trait to a continuous
environment, we encourage researchers to instead use the
approach described by Hansen et al. (2008), which models
adaptation as described throughout this paper.

Conclusions

Here, we reviewed the Hansen model to increase its accessibility and
application in comparative physiology and biomechanics. In our
case study, we examined the thermal physiology associated with
biogeographic dispersal from the tropics to the temperate zone in
Middle American treefrogs. We found cold tolerance (CT;,)
important for explaining the transition, whereas jumping well at low
temperatures (L80) was not. Our results suggest that the niche
conservatism that has prevented most hylid clades from colonizing
the temperature zone relates to intolerance to its seasonally cold
temperatures. However, the physiological basis for such
conservatism in other ectotherms has not been explicitly tested
with phylogenetic analysis. Future work should use OU models of
adaptation to examine the importance of cold tolerance, as
compared with other physiological factors such as locomotion.
Testing more factors, such as metabolism and acclimation, will also
enrich our understanding of the origins of species richness patterns

that vary over climatic gradients. As data are increasingly available
for large-scale comparative studies in physiology and biomechanics
(Higham et al., 2021), we anticipate that OU models will aid in
testing the role of different traits in driving patterns of physiological
and species diversity.
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